Addition of Urine NGAL to Serum Creatinine Improves Prediction of Cefepime Clearance in Pediatric ICU Patients at High Risk of AKI

H. Rhodes Hambrick, MD^{1,2}, Michaela Collins, BS³, Kelli Krallman, MS³, Tomoyuki Mizuno, PhD^{2,4}, Stuart L. Goldstein, MD^{1,3,4}, Sonya Tang Girdwood, MD PhD^{2,4,5}

Cincinnati
Children's
changing the outcome together

¹Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center (CCHMC),

²Division of Translational and Clinical Pharmacology, CCHMC, ³Center for Acute Care Nephrology, CCHMC,

⁴Department of Pediatrics, University of Cincinnati College of Medicine, ⁵Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center

Introduction

- Cefepime (FEP) is commonly used for empiric treatment of sepsis in the critically ill children in our pediatric intensive care unit (PICU).
- FEP primarily undergoes renal clearance (CL), requiring doseadjustment with changing kidney function.
- Serum creatinine (SCr) is used to estimate glomerular filtration rate (eGFR), but changes in tubular injury biomarkers, e.g., urine neutrophil gelatinase-associated lipocalin (uNGAL) may precede SCr elevation during AKI.
- uNGAL is ordered in our PICU in patients at high risk of AKI based on a renal angina index (RAI, AKI risk score) of ≥8.¹
- **Knowledge gap:** It is unknown if uNGAL can predict changes in FEP CL before changes in SCr.
- **Study aim**: determine if uNGAL can improve prediction of FEP CL in patients at risk of AKI in the PICU.

Methods and Materials

- Prospectively enrolled patients admitted to the PICU with RAI of ≥8, given cefepime, & not on extracorporeal therapy.
- Cefepime concentrations were measured from scavenged residual blood samples using HPLC.
- Analyzed cefepime concentrations using pharmacokinetic (PK) modeling software (MwPharm++) and a pediatric FEP PK model² to estimate cefepime CL.
- Used linear regression to compare uNGAL, SCr-eGFR and SCr-defined AKI (KDIGO criteria) as predictors of cefepime CL normalized to body surface area (BSA) before/after hour 48 of PICU admission (b48h/a48h).
 - SCr-eGFR: bedside Schwartz for patients <18; race-neutral CKD-EPI equations for patients ≥18

Results

- 20 patients (mean 11.6y, 50% female) were included. 15 (75%) had concentrations available after 48h.
- 12 (60%) had SCr-defined AKI on PICU admission and 10 (50%) had elevated uNGAL using threshold of 150 ng/mL.
- In univariate analyses, SCr-eGFR correlated with cefepime CL b48h (adjusted [a]r²=0.65) and a48h (ar²=0.67) (**Figure 1**)
- uNGAL values were skewed so geometric inverse was used; 1/uNGAL was associated with cefepime CL b48h (ar²=0.43) and a48h (ar²=0.50) (**Figure 2**).
- In multivariable regression, combining SCr-eGFR and 1/uNGAL improved model performance: ar²=0.70 b48h and 0.72 a48h (Table, right panel).
- Elevated uNGAL was associated with a ~40% decrease in FEP CL after controlling for SCr-AKI (**Table, right panel**).

Additional Results

Figure 1: Regressions of BSA-normalized Cefepime CL vs SCr-eGFR before hour 48 of PICU admission (red) and after hour 48 PICU admission (orange)

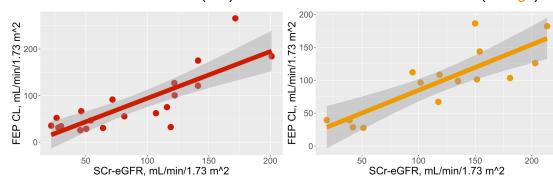
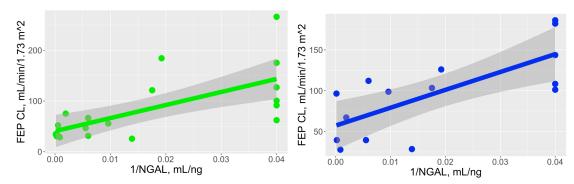



Figure 2: Regressions of BSA-normalized Cefepime CL vs 1/uNGAL before hour 48 of PICU admission (green) and after hour 48 of PICU admission (blue)

Table: Results of regression models of predictors of cefepime CL.

Simple Regression Models			
	Coefficient	Adjusted r ²	
SCr	before 48h**	*	
Intercept	-6.4	0.65	
SCr-eGFR	1.01***		
SC	r after 48h***		
Intercept	15.4	0.67	
SCr-eGFR	0.694***		
1/uNG	AL before 48	h**	
Intercept	40.7*	0.43	
1/uNGAL	2570**		
1/uN	GAL after 48h	**	
Intercept	57.2**	0.50	
1/uNGAL	2190**		

*p<0.10, *p<0.05, **p<0.01, ***p<0.001

	Coefficient	Adjusted r2
SCr eGFR and	1/uNGAL Befo	re 48h***
Intercept	-5.61	
SCr-eGFR	0.787***	0.70
1/uNGAL	1140	
SCr eGFR and	1/uNGAL Afte	er 48h***
Intercept	18.1	0.72
SCr-eGFR	0.512**	
1/uNGAL	1030	
SCr-AKI and uN	GAL ≥150 Bet	fore 48h**
Intercept	139***	0.43
SCr-AKI	-46.2°	
uNGAL ≥150 ng/mL	-59.2*	
SCr-AKI and u	NGAL ≥150 A	fter 48h
Intercept	130***	0.24
SCr-AKI	-23.3	
uNGAL ≥150 ng/mL	-47.1°	

Simple regression equations: Cefepime CL = intercept + predictor*coefficient.

Multiple regression equations: Cefepime CL = intercept + first predictor*coefficient + second predictor*coefficient_2.

Discussion/Conclusions

- uNGAL concentrations at PICU admission are associated with decreased cefepime CL before & after 48h post-admission.
- Addition of uNGAL to SCr-eGFR-based models may improve prediction of cefepime CL; study enrollment is ongoing.

References

- Goldstein SL, et al. Kidney Int Rep. 2022;7(8):1842-9.
- 2. Shoji K, et al. Antimicrob Agents Chemother. 2016;**60**(4):2150-6.

Acknowledgments

H.R.H. was supported by NIH T32 DK007695. S.T.G. was supported by NIH R35FM146701.

THE 29TH INTERNATIONAL CONFERENCE ON
ADVANCES IN CRITICAL CARE NEPHROLOGY

AKI&CRRT 2024